128 research outputs found

    Stable schedule matching under revealed preference

    Get PDF
    Baiou and Balinski (Math. Oper. Res., 27 (2002) 485) studied schedule matching where one determines the partnerships that form and how much time they spend together, under the assumption that each agent has a ranking on all potential partners. Here we study schedule matching under more general preferences that extend the substitutable preferences in Roth (Econometrica 52 (1984) 47) by an extension of the revealed preference approach in Alkan (Econom. Theory 19 (2002) 737). We give a generalization of the GaleShapley algorithm and show that some familiar properties of ordinary stable matchings continue to hold. Our main result is that, when preferences satisfy an additional property called size monotonicity, stable matchings are a lattice under the joint preferences of all agents on each side and have other interesting structural properties

    Pricing Multi-Unit Markets

    Full text link
    We study the power and limitations of posted prices in multi-unit markets, where agents arrive sequentially in an arbitrary order. We prove upper and lower bounds on the largest fraction of the optimal social welfare that can be guaranteed with posted prices, under a range of assumptions about the designer's information and agents' valuations. Our results provide insights about the relative power of uniform and non-uniform prices, the relative difficulty of different valuation classes, and the implications of different informational assumptions. Among other results, we prove constant-factor guarantees for agents with (symmetric) subadditive valuations, even in an incomplete-information setting and with uniform prices

    Designing cost-sharing methods for Bayesian games

    Get PDF
    We study the design of cost-sharing protocols for two fundamental resource allocation problems, the Set Cover and the Steiner Tree Problem, under environments of incomplete information (Bayesian model). Our objective is to design protocols where the worst-case Bayesian Nash equilibria, have low cost, i.e. the Bayesian Price of Anarchy (PoA) is minimized. Although budget balance is a very natural requirement, it puts considerable restrictions on the design space, resulting in high PoA. We propose an alternative, relaxed requirement called budget balance in the equilibrium (BBiE).We show an interesting connection between algorithms for Oblivious Stochastic optimization problems and cost-sharing design with low PoA. We exploit this connection for both problems and we enforce approximate solutions of the stochastic problem, as Bayesian Nash equilibria, with the same guarantees on the PoA. More interestingly, we show how to obtain the same bounds on the PoA, by using anonymous posted prices which are desirable because they are easy to implement and, as we show, induce dominant strategies for the players

    Decision Process in Human-Agent Interaction: Extending Jason Reasoning Cycle

    Get PDF
    The main characteristic of an agent is acting on behalf of humans. Then, agents are employed as modeling paradigms for complex systems and their implementation. Today we are witnessing a growing increase in systems complexity, mainly when the presence of human beings and their interactions with the system introduces a dynamic variable not easily manageable during design phases. Design and implementation of this type of systems highlight the problem of making the system able to decide in autonomy. In this work we propose an implementation, based on Jason, of a cognitive architecture whose modules allow structuring the decision-making process by the internal states of the agents, thus combining aspects of self-modeling and theory of the min

    Seroconversion and asymptomatic infections during oseltamivir prophylaxis against Influenza A H1N1 2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anti-viral prophylaxis is used to prevent the transmission of influenza. We studied serological confirmation of 2009 Influenza A (H1N1) infections during oseltamivir prophylaxis and after cessation of prophylaxis.</p> <p>Methods</p> <p>Between 22 Jun and 16 Jul 09, we performed a cohort study in 3 outbreaks in the Singapore military where post-exposure oseltamivir ring chemoprophylaxis (75 mg daily for 10 days) was administered. The entire cohort was screened by RT-PCR (with HA gene primers) using nasopharyngeal swabs three times a week. Three blood samples were taken for haemagglutination inhibition testing - at the start of outbreak, 2 weeks after completion of 10 day oseltamivir prophylaxis, and 3 weeks after the pandemic's peak in Singapore. Questionnaires were also administered to collect clinical symptoms.</p> <p>Results</p> <p>237 personnel were included for analysis. The overall infection rate of 2009 Influenza A (H1N1) during the three outbreaks was 11.4% (27/237). This included 11 index cases and 16 personnel (7.1%) who developed four-fold or higher rise in antibody titres during oseltamivir prophylaxis. Of these 16 personnel, 8 (3.5%) were symptomatic while the remaining 8 personnel (3.5%) were asymptomatic and tested negative on PCR. Post-cessation of prophylaxis, an additional 23 (12.1%) seroconverted. There was no significant difference in mean fold-rise in GMT between those who seroconverted during and post-prophylaxis (11.3 vs 11.7, p = 0.888). No allergic, neuropsychiatric or other severe side-effects were noted.</p> <p>Conclusions</p> <p>Post-exposure oseltamivir prophylaxis reduced the rate of infection during outbreaks, and did not substantially increase subsequent infection rates upon cessation. Asymptomatic infections occur during prophylaxis, which may confer protection against future infection. Post-exposure prophylaxis is effective as a measure in mitigating pandemic influenza outbreaks.</p

    No transfer of calibration between action and perception in learning a golf putting task

    Get PDF
    We assessed calibration of perception and action in the context of a golf putting task. Previous research has shown that right-handed novice golfers make rightward errors both in the perception of the perfect aiming line from the ball to the hole and in the putting action. Right-handed experts, however, produce accurate putting actions but tend to make leftward errors in perception. In two experiments, we examined whether these skill-related differences in directional error reflect transfer of calibration from action to perception. In the main experiment, three groups of right-handed novice participants followed a pretest, practice, posttest, retention test design. During the tests, directional error for the putting action and the perception of the perfect aiming line were determined. During practice, participants were provided only with verbal outcome feedback about directional error; one group trained perception and the second trained action, whereas the third group did not practice. Practice led to a relatively permanent annihilation of directional error, but these improvements in accuracy were specific to the trained task. Hence, no transfer of calibration occurred between perception and action. The findings are discussed within the two-visual-system model for perception and action, and implications for perceptual learning in action are raised

    Time Scale Hierarchies in the Functional Organization of Complex Behaviors

    Get PDF
    Traditional approaches to cognitive modelling generally portray cognitive events in terms of ‘discrete’ states (point attractor dynamics) rather than in terms of processes, thereby neglecting the time structure of cognition. In contrast, more recent approaches explicitly address this temporal dimension, but typically provide no entry points into cognitive categorization of events and experiences. With the aim to incorporate both these aspects, we propose a framework for functional architectures. Our approach is grounded in the notion that arbitrary complex (human) behaviour is decomposable into functional modes (elementary units), which we conceptualize as low-dimensional dynamical objects (structured flows on manifolds). The ensemble of modes at an agent’s disposal constitutes his/her functional repertoire. The modes may be subjected to additional dynamics (termed operational signals), in particular, instantaneous inputs, and a mechanism that sequentially selects a mode so that it temporarily dominates the functional dynamics. The inputs and selection mechanisms act on faster and slower time scales then that inherent to the modes, respectively. The dynamics across the three time scales are coupled via feedback, rendering the entire architecture autonomous. We illustrate the functional architecture in the context of serial behaviour, namely cursive handwriting. Subsequently, we investigate the possibility of recovering the contributions of functional modes and operational signals from the output, which appears to be possible only when examining the output phase flow (i.e., not from trajectories in phase space or time)
    corecore